Technip Supporting Malaysian OTEC Ambitions

Jim O’SULLIVAN, CTO Technip
Kuala Lumpur, Malaysia
September 2015
Table of contents

1. Technip Today
2. OTEC Design & Economic Issues
3. Malaysian OTEC Opportunities
Technip Today
With engineering, technologies and project management, on land and at sea, we safely and successfully deliver the best solutions for our clients in the energy business

- Worldwide presence with over 38,000 people in 48 countries
- Industrial assets on all continents, a fleet of 27 vessels (of which 6 under construction)
- 2014 revenue: €10.7 billion

ENERGY IS AT THE CORE OF TECHNIP
An Absolute Commitment to HSES

“The Health and Safety of our people is a core value and an absolute commitment”

Thierry Pilenko, Chairman and CEO of Technip

- Technip’s global HSES climate change program
- A Reference Company in HSES (Chevron, Wheatstone, Shell Prelude, Shell Malikai, Petronas RAPID)

DELIVERING EXCELLENT HSES PERFORMANCE AT EVERY LEVEL
Malaysia Major Technip Resource Center

3,000 in Malaysia
Technip Projects:
- Kikeh
- Gumusut- Kakap
- Malikai
- Petronas FLNG1

Fleet & others: 3,400
Engineering & Project Management: 2,500
Asiaflex Products, flexible pipe and umbilical manufacturing plant: 2,500
Asia Pacific: 6,000
Fabrication – Part Owner MMHE: 4,600
Marine Vessels: 4,000
4,200
9,800
1,000

Technip globally covers the full range of OTEC technologies and delivery capabilities, and envisions OTEC facilities as a future design and delivery service.

Technip has a very strong organization in Asia Pacific, centered in Malaysia where we have maintained strong client relationships and made substantial investments.

Technip understands Malaysia’s desire to be a leader in OTEC and wants to support that ambition.

Offshore Malaysia represents an ideal environment for a demonstration plant and educational facility.
OTEC Design & Economic Issues
OTEC Plant Architecture

Technip has design engineers and supplier networks for all OTEC components.
Technip Did Designs for 5, 10 & 100 MW Net
5MW Plant Served As The Building Block
Considered Motions, Fabrication & Installation Issues For Hull Selection vs Power Capacities

- **Spar Type**
 - **Advantages**
 - Best in-situ stability for cold pipe design
 - Best operability in cyclonic regions
 - **Disadvantages**
 - Horizontal fabrication, transport, on site up-righting and topside installation
 - Access for maintenance in hull

- **Multi-Column Type**
 - **Advantages**
 - Vertical fabrication and integration
 - Relatively good stability in cyclonic regions with large deck areas
 - **Disadvantages**
 - Access for maintenance in hull
 - Low hull inefficiency for higher power capacity

- **Ship Shape Type**
 - **Advantages**
 - Lowest cost for supporting facilities
 - Drydock fabrication and quayside topside integration with large deck areas
 - **Disadvantages**
 - Vessel motions in cyclonic regions – difficult cold pipe designs

- **Caisson Type**
 - **Advantages**
 - Spar like stability – excellent operability in cyclonic region
 - Vertical fabrication, transportation and installation
 - Good hull efficiency and access for maintenance
 - **Disadvantages**
 - Fabrication sites
Resulting Installed CAPEX Curve Similar To Published Curves … But Marginally Higher

Technical Price Estimates for 5, 10 and 100 MW Net OTEC Power Plants, Installed

Differences were in integration, transportation and installation … not in hardware and hull
Majority Of Potential Users Have Positive Returns With Today’s Energy Prices

Market expected return

Source: NYU Stern School of Business for Weighted Average Cost of Capital (WACC) of Global Power Generation 2013
Malaysian OTEC
Potential for OTEC in Malaysia

- Mild environment,
- >1000m depth (Sabah Trench),
- $\Delta T > 25^\circ C$,
- <120km offshore
- Several near-by production facilities – power users
Technip Has Been Involved In Several Sabah Trough Deliveries – Know Area Well

SHELL Gumusut-Kakap Semi-Sub, Offshore Sabah (Detailed Engineering)

MURPHY Kikeh Spar Dry Tree Unit + Subsea facilities, Offshore Sabah (Engineering, Procurement, Construction & Installation)

Shell Malikai TLP, Malaysia (Engineering, Procurement, Construction)
Sabah O&G Deepwater: Technip’s OTEC Integration Plan

- Study O&G fields across entire Sabah Deepwater / Trough
- Identify power demand for each O&G DW cluster
- Identify strategies that optimize power costs considering both OTEC and conventional Gas-Fired Turbine Power Generation
- Support Petronas and PSCs to become pioneer of this hybrid solution and promote it worldwide!
Summary

- **OTEC technology is mature**
 - Ample supplier base for key components
 - Availability of advanced testing facilities

- **Economics are workable**
 - Power generation clear visible market
 - There are other less visible markets

- **Malaysia is an ideal location for OTEC industry**
 - Environment ideal
 - National resources available

We can do this
Thank you