Observing ocean changes at the nation’s first SWAC system

Christina Comfort, Chris Ostrander, Margaret McManus, Dave Karl, Doug Luther, Luis Vega

University of Hawaii - SOEST
SWAC Introduction

- Similar to OTEC – renewable energy
- Environmental changes or risks? Unique considerations

- Seawater plume: moving seawater from 500m to 130m

- Ecosystem response unknown – possibilities:
 - Higher nutrients \rightarrow algae bloom?
 - Genomic relocation \rightarrow changes in plankton community?
 - Thermal gradients, low oxygen \rightarrow animal behavior?

- HSWAC development = Opportunity for before-after study
Monitoring: Bottom mooring

- CTD (conductivity, temperature, pressure)
 - + oxygen, fluorescence and turbidity
- ADCP: 300kHz
- Nitrate sensor
- Tagged fish receiver
Monitoring: CTD casts and water sampling

- Nutrients (N,P,Si)
- Chlorophyll a
- Microbes
- Dissolved gases
- Flow cytometry
- DIC
Monitoring: MMPs and PacIOOS

- A moving moored profiler collects baseline current and CTD data
- PacIOOS – Pacific Islands Ocean Observing System
 - Gliders make passes through the area
 - HF radar provides surface current data
Preliminary results: Bottom mooring

- ADCP reveals low current velocities near bottom
- Typical along-isobath currents observed in midwater
- Across-isobath currents observed near bottom
Preliminary results: Bottom Mooring

- Tidal shifts in temp, salinity, fluorescence.
- Water mass shift in early May?
Preliminary results: CTD Casts
Items of note and path forward

* Cross-shore currents at site
 * Capable of advecting plume upslope?
 * Bring nutrients into well-lit water?
 * Density of plume vs. current field

* “Before-After” experimental design
 * ~1-1.5 years baseline
 * 1-2 years operational

Funding and Support:

Photo: Christopher Pala, www.onewater.org

Mahalo! Questions?