An Order-of-Magnitude Estimate of Ocean Thermal Energy Conversion Resources

Gérard C. Nihous
Hawaii Natural Energy Institute, University of Hawaii, Honolulu, HI 96822

Worldwide power resources that could be extracted from the steady-state operation of ocean thermal energy conversion (OTEC) plants are estimated using a simple model. This order-of-magnitude analysis indicates that about 3×10^9 kW (3 TW) may be available, at most. This value is much smaller than estimates currently suggested in the technical literature. It reflects the scale of the perturbation caused by massive OTEC seawater flow rates on the thermal structure of the ocean. Not surprisingly, maximum OTEC power nearly corresponds to deep cold seawater flow rates of the order of the average abyssal upwelling representative of the global thermohaline circulation. [DOI: 10.1115/1.1949624]

1 Introduction

Ocean thermal energy conversion (OTEC) is an old concept that aims to tap solar energy stored as sensible heat in the upper mixed layer of tropical oceans [1, 2]. Deep cold seawater originally formed at polar margins provides the low temperature needed for an appropriate working fluid (such as ammonia) to complete a thermodynamic (e.g., Rankine) cycle; the mechanical work produced is easily convertible to electricity. Because practical temperature differences are only of the order of 20 °C, with much of this resource needed in the process heat exchangers, the cycle thermodynamic efficiency is of the order of 3%. As a result, several cubic meters per second of seawater are necessary to produce just 1 MW of net electricity. Such facts have thus far prevented OTEC and some of its byproducts from being economically competitive. More details can be found in a number of informative synoptic summaries [3–8].

In spite of the challenges faced by OTEC pioneers and enthusiasts in the past several decades, future energy markets may sufficiently change that the vast baseline OTEC resource may become attractive, at least in some special niches. An interesting theoretical question is how large a resource OTEC really is. Not too much emphasis is given to this perhaps academic issue in basic OTEC texts. Meanwhile, worldwide demand for power, in general, and electricity, in particular, has rapidly grown. An analysis of the global energy market was recently published by the U.S. Department of Energy (International Energy Outlook 2004) [9]. Historical data through 2001 and midterm projections from 2010 are displayed in Fig. 1 for marketed primary energy1 (fossil fuels, as well as electricity from nuclear and renewable sources). A seemingly inexhaustible reserve 50 years ago may be quite insufficient today.

Zener [10, 11] recognized in the 1970s that “Society will not allow any large-scale activity without a prior examination of potential environmental effects.” He did not explicitly predict a limit for OTEC power, but concluded that a production of 60 TW would not have adverse impacts (e.g., a 1 °C cooling of the tropical ocean surface with compensating effects).

OTEC texts and papers usually refer to incident solar power absorbed in the oceans as a sufficient yardstick to size the OTEC resource. It is often expressed in “barrels of oil equivalent” (boe) over the warmest oceans, e.g., 250 billion boe per day over 60 million km² [7, 12]. This figure can easily be translated into some electrical production potential, as in Table 1.

Noting that the average incident solar power absorbed by the world’s oceans is about 240 W/m², Vega [6] chooses instead the smaller flux corresponding to evaporation as a reference (i.e., 95 W/m²). This flux is an example of the natural conversion of solar energy (into latent heat) that Vega [6] postulated to scale the OTEC resource by using a 3% cycle efficiency on the evaporative flux over the 370 million km² covered by the world’s oceans. This implicitly yields a resource estimate of about 1000 TW (10^{12} kW). He then notes that 1% of this amount is of the same order of magnitude as the current worldwide power demand.

After the usual reference to solar power absorbed by the oceans, Johnson [4] notes that the sustainability of the OTEC resource must be limited by the rate of formation of the deep cold seawater. He then quotes an OTEC resource of 50–150 TW, but without details.

In the first page of their text, Avery and Wu [5] recognize that there is an upper bound for continuous OTEC operation beyond which significant environmental effects would be incurred; they give a limit of 190 kW of net OTEC power per square kilometer without details; over 100 million km² (10^{14} m²) of tropical oceans, this would indicate an OTEC resource of 19 TW.

Finally, Penney and Daniel [3] and Daniel [8] cap the OTEC resource at 10 TW, but once more, the “calculations” or “various methods” that lead to this estimate are omitted. They associate the limit with “a continuous, renewable basis,” whereby electricity “could be extracted without significantly changing the thermal structure of the ocean.” The mention of an OTEC heat load of 7 billion boe per day associated with the 10 TW electrical output [3] suggests a net OTEC conversion efficiency of the order of 2%. As discussed in Sec. 2, this represents a standard value for the OTEC process with typical seawater temperatures; it confirms the authors’ assessment that the thermal structure of the ocean would not substantially be perturbed.

Martin and Roberts [13] published an elegant time-domain model of the operation of 1000 200 MW OTEC plants in the Gulf of Mexico (about 10^{12} m³). They showed that such a scenario was not sustainable, as the available OTEC temperature difference would keep decreasing over time; crudely extrapolated over the tropical oceans (10^{14} m³), even though the relatively closed Gulf of Mexico may behave quite differently from large open oceanic areas, this OTEC production would correspond to worldwide resources of 20 TW.

Table 1 summarizes explicit or implicit OTEC resource limits found in (or inferred from) the technical literature. Estimates based solely on solar power absorbed by the ocean or some derivative flux appear much too large (several hundred-terawatts). When further limitations inherent to the OTEC process are considered, a wide range of 10–150 TW is quoted without details.

The following study is an elementary attempt to realistically provide an order-of-magnitude estimate of OTEC resources. Section 2 describes a standard OTEC process and a one-dimensional steady-state model of the vertical structure of oceanic temperature. Section 3 provides results from these algorithms in the form of steady-state OTEC resource limits.

2 Model Description

2.1 Standard OTEC Process A standard OTEC process is adopted here with little loss of generality, even though operational adaptability may help optimizing the utilization of limited and
changing OTEC resources. Calling ΔT the available OTEC temperature difference between surface and deep ocean waters, it typically is broken down into a “temperature ladder.” From a simple optimization procedure [4], it can be shown that the temperature drop across the power-generating turbine is about $\Delta T/2$. The maximum thermodynamic efficiency of an ideal Rankine OTEC power cycle then is very closely approximated by $\Delta T/(2T)$, where T is the surface water temperature. Irreversibilities in the working-fluid expansion (turbine) and compression (pump) occur in real machines. These departures from an ideal Rankine cycle, as well as small losses in the electrical conversion step (generator) are taken into account with a 15% reduction in gross electrical power output (turbogenerator efficiency ϵ_g of 85%). With representative values ΔT = 20°C and T = 25°C (298.15 K in the formula), the gross OTEC conversion efficiency is $\alpha = \epsilon_g \Delta T/(2T) = 2.85\%$. In other words, OTEC is a rather inefficient process, though the resource is abundant and renewable.

The case is considered where twice as much warm surface water Q_{ww} as cold deep water Q_{cw} is used, i.e., $Q_{cw} = \eta Q_{ww}$ with η = 0.5. This typical choice [14,15] reflects the more immediate availability of surface water; in specific designs, η would be optimized. To determine the rest of the OTEC temperature ladder, a minimum approach (pinch) temperature of $\Delta T/16$ (1.25°C at standard conditions) in either evaporator or condenser is chosen to maintain the exchange of heat. Since the energy extracted in the OTEC process is small relative to the heat-exchanger loads, it can be neglected in a simplified heat-and-mass balance. It follows that the surface seawater cools by [3 $\eta/(1 + \eta)$] $\Delta T/8$ in the evaporator, and the deep seawater warms by [3/(1 + η)] $\Delta T/8$ in the condenser. The temperature ladder as well as a basic OTEC energy budget are illustrated in Fig. 2.

The gross electrical power P_g generated is written as the product of the evaporator heat load and the gross OTEC conversion efficiency

$$P_g = \frac{Q_{ww} \rho c_p \eta m_{ww}}{16(1 + \eta)T} \Delta T^2$$

where ρ is an average seawater density, say 1025 kg/m3, and c_p is

Table 1 Summary of OTEC power limits from the technical literature

<table>
<thead>
<tr>
<th>Source</th>
<th>OTEC power limit (TW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incident solar power over 60 million km2 (tropical oceans): 250 billions barrels of oil equivalent (boe) daily [7,12]</td>
<td>366b,c–610b,c</td>
</tr>
<tr>
<td>Evaporative flux over all oceans (370 million km2) and 3% OTEC conversion efficiency [6]</td>
<td>180b,c–1000</td>
</tr>
<tr>
<td>Limited by the rate of formation of deep water (no details) [4]</td>
<td>50–150</td>
</tr>
<tr>
<td>Environmentally safe OTEC production density: 190 kW/km2 (no details) [5]</td>
<td>19c</td>
</tr>
<tr>
<td>Continuous, renewable OTEC production with no detrimental effect on the oceanic thermal structure (no details) [3,8]</td>
<td>10</td>
</tr>
<tr>
<td>Projected OTEC production of 60 TW deemed safe [10,11]</td>
<td>>60</td>
</tr>
<tr>
<td>Projected OTEC production of 0.2 TW over 1 million km2 not sustainable [13]</td>
<td><20</td>
</tr>
</tbody>
</table>

a1 boe is 6 million BTU, or 6.326×10^9 TJ

bA net OTEC conversion efficiency of 2% was applied (Standard OTEC Process described in Section 2)

cAn area of 100 million km2 was used

Journal of Energy Resources Technology

DECEMBER 2005, Vol. 127 / 329
the net power, \(P_{\text{net}} \), decreases even more sharply than approximately, may be written

\[
P_{\text{net}} = \frac{Q_{\text{in}}P_c}{16(1 + \eta)T} (\Delta T^2 - 0.3 \Delta T^2_{\text{design}})
\]

(2)

Net power decreases even more sharply than \(P_g \) as \(\Delta T \) drops. In fact, \(P_{\text{net}} \) would drop to zero at \(\Delta T = 20 \, ^\circ\text{C} \), with \(\Delta T_{\text{design}} = 20 \, ^\circ\text{C} \). It could be argued that a drop in thermal resource could be matched by an increase in flow-rate, but the coefficient 0.3 (30%) representing parasitic in-plant losses, instead of being held constant, would then increase rapidly. In what follows, Eq. (2) will be used as a basis to evaluate OTEC resources. It corresponds to a total seawater flow-rate intensity of 7.3 \((\text{m}^3/\text{s})/\text{MW}(\text{net})\) at design conditions (with \(\eta = 0.5 \)).

2.2 Oceanic Temperature Structure: Steady-State Advection-Diffusion Equations. The analysis is simplified with the adoption of a one-dimensional oceanic water column extending from the seafloor (at \(z=0 \)) to the bottom of a mixed layer of thickness \(h_w \) (at \(z=L \)). This approach has been widely used to provide insight in otherwise fairly complex problems [16,17]. A fundamental assumption is that the scale of OTEC operations is so large, over an area \(A_{\text{OTECE}} \) of the same order of magnitude as the total oceanic surface \(A \), that the effect of horizontal inflow and outflow at the margins can be overlooked. Avery and Wu [5] estimated the zone corresponding to \(\Delta T = 22 \, ^\circ\text{C} \) to be as large as \(6 \times 10^{13} \, \text{m}^2 \). These authors and others [7] also show a worldwide map of the OTEC resource. As expected, it lies within subtropical latitudes. With a practical value \(\Delta T_{\text{design}} = 20 \, ^\circ\text{C} \), it seems reasonable to take \(A_{\text{OTECE}} = 10^{14} \, \text{m}^2 \), whereas \(A \) is about \(3.7 \times 10^{14} \, \text{m}^2 \). A precise assessment of the possible effect of marginal horizontal flow involving waters from high latitudes on the results of this study is left for further consideration. It is believed, however, that any realistic uncertainty upper bound should be smaller than values obtained by replacing \(A_{\text{OTECE}} \) with \(A \) in what follows.

Furthermore, focus here is on steady-state solutions with a mixed-layer temperature \(T_0 \). A stable temperature profile \(\theta(z) \) can be obtained through the water column below by balancing the downward diffusion of heat with an upwelling (upward advection) of velocity \(w \). The vertical diffusion coefficient \(K \) is taken as constant, with little loss of generality (the analysis easily could be extended, for example with a diffusion coefficient inversely proportional to \(\sqrt{d\theta/dz} \)). Without extensive flow perturbations from very large scale OTEC operations, the steady-state equation for \(\theta(z) \) is

\[
-K \frac{d\theta}{dz} + w = wT_p
\]

(3)

where \(T_p \) is the temperature of the polar water downwelled from the margins of this one-dimensional ocean over the entire seafloor. Equation (3) also must satisfy the following boundary condition:

\[
\theta(L) = T_0
\]

(4)

It follows that the unperturbed steady-state temperature profile simply is

\[
\theta(z) = T_p + (T_0 - T_p) \exp \left(-\frac{z-L}{K} \right)
\]

(5)

If a warmer steady-state ocean is envisioned in the far future, for example, as a result of an accumulation of greenhouse gases in the atmosphere, with a mixed-layer temperature \(T > T_0 \), it may not be sufficient to replace \(T_0 \) with \(T \) in Eq. (5); the upwelling rate also should be adjusted from \(w \) to \(w' \). The strength of the polar heat sink is assumed to be constant and proportional to \(w(T_0 - T_p) \) throughout the warming period; since \(T_p \) results from the formation and melting of polar ice, it also should be held constant (e.g., at 0 °C). If the water being cooled before downwelling at the polar margins is provided from a mixed layer at \(T \), it follows from a heat-and-mass balance of the polar zone that:

\[
w' = \frac{T_0 - T_p w}{T - T_p}
\]

(6)

Figure 3 shows the basic and warm-ocean steady-state, unperturbed temperature profiles adopted in this study. \(T_0 \) is taken as 25 °C, to be representative of tropical regions. \(w=4 \, \text{m/yr} \) and \(K = 2300 \, \text{m}^2/\text{yr} \) were selected to yield a temperature \(\theta_w \) of 5 °C at the targeted OTEC deep water withdrawal depth of 1000 m (\(z_w = 3075 \, \text{m} \) with \(L=4000 \, \text{m} \) and a mixed layer 75 m thick).
constant salinity, the neutral-buoyancy injection depth for OTEC mixed effluents with \(\eta = 0.5 \) (\(\theta_{\text{mix}} = 18.33^\circ \text{C} \)) is 253 m (\(\theta_{\text{mix}} = 3822 \text{ m} \)).

The choice of vertical advection rate \(w \) is typical of one-dimensional models of the ocean [18,19]. The vertical eddy-diffusion coefficient \(K \) is about half of the value proposed in early references [19], but it is in good agreement with the findings of recent and more elaborate models [20].

For the warm-ocean condition, an increase of 4°C (i.e., \(T = 29^\circ \text{C} \)) is considered; it corresponds to an approximate tripling of preindustrial atmospheric carbon dioxide concentrations. This is representative of asymptotic (post-industrial) predictions based on the combustion of estimated fossil fuel reserves [16,17].

In what follows, the normal-ocean condition is implicit unless otherwise specified. The steady-state effect of massive OTEC operations is now examined by defining a mixed-layer utilization time \(\tau_m \), such that the combined warm-water intake flow rate from all OTEC operations would be

\[
Q_{\text{w}} = \frac{A_{\text{OTE}} h_{\text{m}}}{\tau_m}
\]

where \(A_{\text{OTE}} \) is the oceanic surface concerned with OTEC operations. Given the standard OTEC process described in Sec. 2.1, the withdrawals of warm surface seawater and of cold deep seawater represent water-column heat sinks equal to \(Q_{\text{w}} \) in the mixed layer and to \(\eta Q_{\text{w}} \) in \(\theta_{\text{m}} \) at \(\theta_{\text{cw}} \), respectively. There is also a heat source at \(z = \theta_{\text{mix}} \) equal to \((1 + \eta) Q_{\text{w}} \) in \(\theta_{\text{mix}} \). As noted earlier, the energy extracted from ocean waters in the OTEC process is so much smaller than the enthalpies of the corresponding seawater streams that \(\theta_{\text{mix}} \) can be very closely approximated by \((T_0 + \eta \theta_{\text{m}})/(1 + \eta) \). Then, the source at \(z = \theta_{\text{mix}} \) is the sum of the two OTEC sinks. This has an important and immediate consequence: the steady-state mixed-layer temperature is not affected by OTEC operations, since the net sum of all OTEC heat sources and sinks, from the sea floor to the ocean surface, is zero. This result is consistent with the time-domain calculations of Martin and Roberts [13], for a relatively closed system, such as the Gulf of Mexico, which showed a rapid recovery of the surface temperature after about a decade of massive OTEC operations.

The oceanic water column below the mixed layer is substantially affected, however. The vast flow rates sustaining OTEC operations must be balanced. If this one-dimensional model is considered to be closed, equilibrium will be achieved by having an additional upwelling \(h_{\text{m}} / \tau_m \) for \(z = \theta_{\text{mix}} > z > L \), and an additional downwelling \(\eta h_{\text{m}} / \tau_m \) for \(z = \theta_{\text{mix}} > z > z_{\text{cw}} \), as illustrated in Fig. 4. The following three coupled steady-state boundary-value problems are obtained, instead of Eqs. (3) and (4):

\[
-K \frac{d \theta}{dz} + \left(w + \frac{h_{\text{m}}}{\tau_m} \right) \theta = w T_p + \frac{h_{\text{m}}}{\tau_m} T_0
\]

with Eq. (4) for \(\theta_{\text{mix}} > z > L \);

\[
-K \frac{d \theta}{dz} + \left(w - \frac{\eta h_{\text{m}}}{\tau_m} \right) \theta = w T_p - \frac{\eta h_{\text{m}}}{\tau_m} \theta_{\text{cw}}
\]

with a temperature continuity condition at \(z = \theta_{\text{mix}} \) for \(\theta_{\text{cw}} \), and Eq. (3) with a temperature continuity condition at \(z = \theta_{\text{cw}} \) for \(0 > z > z_{\text{cw}} \).

Solving Eqs. (4) and (8) in the upper water-column layer \(\theta_{\text{mix}} > z > L \) yields

\[
\theta(z) = C + \frac{(T_0 - C) \exp \left[-w \frac{h_{\text{m}}}{\tau_m} \frac{z - L}{K} \right]}{K}
\]

where \(C = (w T_p + h_{\text{m}} T_0)/\tau_m + (w + h_{\text{m}}) \tau_m \).

Substituting \(z = \theta_{\text{mix}} \) into Eq. (10) provides the continuity condition \(\theta(z_{\text{mix}}) \) for solving Eq. (9) in the domain \(z_{\text{cw}} > z > \theta_{\text{mix}} \); the following temperature profile is obtained:

\[
\theta(z) = D + \frac{(\theta(z_{\text{mix}}) - D) \exp \left[w \frac{\eta h_{\text{m}}}{\tau_m} \frac{z - \theta_{\text{mix}}}{K} \right]}{D}
\]

where \(D = (w T_p - \eta h_{\text{m}} \theta_{\text{cw}}/\tau_m)/w - \eta h_{\text{m}}/\tau_m \).

Substituting \(z = \theta_{\text{cw}} \) into Eq. (11) provides the continuity condition \(\theta(z_{\text{cw}}) \) as an implicit equation, for solving Eq. (3) in the domain \(0 > z > \theta_{\text{cw}} \); the following temperature profile is obtained:

\[
\theta(z) = T_p + \frac{(\theta(z_{\text{cw}}) - T_p) \exp \left[w \frac{\eta h_{\text{m}}}{\tau_m} \frac{z - \theta_{\text{cw}}}{K} \right]}{D}
\]

Figure 3 shows the perturbed steady-state temperature profiles when \(\tau_m = 10 \text{ years} \), with either the baseline or warm-ocean conditions.

3 Results and Discussion

3.1 Basic OTEC Resource Limit. The OTEC power \(P_{\text{net}} \) that can be produced in a continuous steady-state fashion (as predicted by the model described in Sec. 2.2) is expected to reach a maximum as OTEC operations expand. The OTEC resource limit is understood here as this maximum \(P_{\text{max}} \). Since the oceanic thermal structure and circulation are allowed to be substantially altered, it is highly probable that acceptable limits defined from global ecological criteria would be lower than \(P_{\text{max}} \). Also, transient phenomena, as massive OTEC operations are developed over a significant time span, could be of considerable importance, for better or worse; this issue is left for further studies. With such caveats, \(P_{\text{max}} \) can simply be evaluated by Eqs. (2) and (7), once \(\theta_{\text{cw}} \) has been determined from the perturbed oceanic temperature profile. As \(\theta_{\text{cw}} \) increases when \(\tau_m \) decreases, \(P_{\text{net}} \) is prevented from growing linearly with flow rate and eventually reaches a maximum; at that point, additional OTEC plants would start reducing overall OTEC power production.

Figure 5 shows \(P_{\text{net}} \) as a function of \(\tau_m \), for \(A_{\text{OTE}} \) equal to \(10^{14} \text{ m}^2 \) (100 million km²). Under these circumstances, OTEC net power would peak at 2.7 TW when \(\tau_m \) is 8.4 yr. \(\Delta T \) at maximum power would have dropped from the design value of 20°C to 15.9°C, as \(\theta_{\text{cw}} \) would have warmed from 5°C to 9.1°C. In this situation, the net vertical flow would already correspond to downwelling in the layer \(z_{\text{cw}} > z > \theta_{\text{mix}} \). The transition to net downwelling occurs when \(w \) is canceled out by \(\eta h_{\text{m}}/\tau_m \) i.e., when \(\tau_m \) is 9.375 yr. It is logical to believe that the transition to downwelling effectively would represent the case quoted by Johnson [4], whereby the OTEC deep cold seawater flow rate would match the rate at which deep water forms. Even if \(\Delta T \) did not change, and even if the deep cold seawater could be drawn over \(A \) rather than \(A_{\text{OTE}} \), the OTEC resource corresponding to \(\tau_m = 9.375 \text{ yr} \) would be about 19 TW (i.e., much less than the range quoted in [4]).
reached such levels that the idea of virtually unlimited OTEC consumption of electrical power as well as expected demands, have still represents a staggering amount of power. The worldwide con-
eration of ocean thermal energy conversion power resources that could be extracted from the steady-state op-
eration of ocean thermal energy conversion (OTEC) plants. Although the simple one-dimensional model used here may not re-
produce the complexity of a time-varying three-dimensional oceanic environment, it nevertheless captures a fundamental self-
limitation of the OTEC technology: the likely disruption of the vertical thermal structure of the oceanic water column by the mas-
ive seawater flow rates needed to sustain large-scale OTEC op-
erations. Not surprisingly, maximum OTEC power is predicted when the utilization of deep cold seawater is of the order of the average abyssal upwelling representative of the global thermohaline circulation.

According to the present study, about 3×10^6 kW (3 TW) of steady-state OTEC power may be available at most. This estimate is much smaller than values currently available in the technical literature, which are often inferred from the solar power absorbed by tropical oceans. Though perhaps disappointing to renewable energy enthusiasts, the order-of-magnitude estimate proposed here still represents a staggering amount of power. The worldwide con-
sumption of electrical power as well as expected demands, have reached such levels that the idea of virtually unlimited OTEC energy does not hold.

Nomenclature

- A = overall oceanic surface area, m2
- A_{OTECE} = oceanic surface area for practical OTEC power production, m2
- c_p = specific heat of seawater, J/kg K
- C = auxiliary expression in Eq. (10), °C
- D = auxiliary expression in Eq. (11), °C
- h_{mix} = mixed layer thickness, m
- K = vertical eddy diffusion coefficient, m2/s
- L = water-column thickness below mixed layer, m
- P_g = OTEC gross power, W
- P_{max} = estimated overall OTEC net power, W
- P_{net} = OTEC net power, W
- Q_{cw} = OTEC cold deep seawater volume flow rate, m3/s
- Q_{uw} = OTEC warm surface seawater volume flow rate, m3/s
- T = surface seawater temperature in warm ocean, °C
- T_0 = surface seawater temperature, °C
- T_p = polar seawater temperature, °C
- w = upward advection (upwelling) rate, m/s
- w' = upward advection (upwelling) rate in warm ocean scenario, m/s
- z = vertical water-column coordinate, m
- z_{cw} = vertical coordinate of OTEC deep seawater withdrawal, m
- z_{mix} = vertical coordinate of OTEC mixed effluent discharge, m

Greek Letters

- ΔT = temperature difference available for OTEC process, °C
- ΔT_{design} = design temperature difference available for OTEC process, °C
- η = turbogenerator efficiency
- η = ratio of cold seawater flow rate over warm seawater flow rate in OTEC process
- ρ = seawater density, kg/m3
- θ = water-column temperature, °C
- θ_{cw} = OTEC cold seawater temperature, °C
- θ_{mix} = OTEC mixed effluent temperature, °C
- τ_{mix} = mixed layer utilization time, s

References

Gérard C. Nihous graduated from the Ecole Centrale in Paris in 1979 and from the University of California at Berkeley in 1983. His doctorate thesis in ocean engineering dealt with wave power extraction. After moving to Hawaii in 1987, he was involved in research on Ocean Thermal Energy Conversion for more than a decade. He has also worked extensively on the ocean sequestration of carbon dioxide. He taught a graduate course on renewable energy at Hiroshima University in 1996–1997. He currently belongs to the Hawaii Natural Energy Institute at the University of Hawaii doing research on methane hydrates.